3,709 research outputs found

    Status of background-independent coarse-graining in tensor models for quantum gravity

    Full text link
    A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underlying the use of the number of degrees of freedom as a scale for a Renormalization Group flow. We focus on tensor models, for which we explain how the tensor size serves as the scale for a background-independent coarse-graining flow. This flow provides a new probe of a universal continuum limit in tensor models. We review the development and setup of this tool and summarize results in the 2- and 3-dimensional case. Moreover, we provide a step-by-step guide to the practical implementation of these ideas and tools by deriving the flow of couplings in a rank-4-tensor model. We discuss the phenomenon of dimensional reduction in these models and find tentative first hints for an interacting fixed point with potential relevance for the continuum limit in four-dimensional quantum gravity.Comment: 28 pages, Review prepared for the special issue "Progress in Group Field Theory and Related Quantum Gravity Formalisms" in "Universe

    Evidence for a novel shift-symmetric universality class from the functional renormalization group

    Full text link
    Wetterich's equation provides a powerful tool for investigating the existence and universal properties of renormalization group fixed points exhibiting quantum scale invariance. Motivated by recent works on asymptotically safe scalar-tensor theories, we develop a novel approximation scheme which projects the functional renormalization group equation onto functions of the kinetic term. Applying this projection to scalars and gauge fields, our analysis identifies a new universality class with a very special spectrum of stability coefficients. The implications of our findings in the context of asymptotically safe gravity-matter systems are discussed.Comment: 10 pages, 3 figure

    The fate of chiral symmetry in Riemann-Cartan geometry

    Full text link
    We study the mechanism of chiral symmetry breaking for fermionic systems in a gravitational background with curvature and torsion. The analysis is based on a scale-dependent effective potential derived from a bosonized version of the Nambu-Jona-Lasino model in a Riemann-Cartan background. We have investigated the fate of chiral symmetry in two different regimes. First, to gain some intuition on the combined effect of curvature and torsion, we investigate the regime of weak curvature and torsion. However, this regime does not access the deep infrared limit, which is essential to answer questions related to the mechanism of gravitational catalysis in fermionic systems. Second, we look at the regime of vanishing curvature and homogeneous torsion. In this case, although we cannot probe the combined effects of curvature and torsion, we can access the deep infrared contributions of the background torsion to the mechanism of chiral symmetry breaking. Our main finding is that, in the scenario where only torsion is present, there is no indication of a mechanism of gravitational catalysis.Comment: 18 pages, 2 figure
    • …
    corecore